Category Archives: Meetings

Terry Scott – Spinning-Top Box

Club Night: 6 Nov 2019
Report by: Murray Wilton

Here’s a turned box with a difference. The lid is a spinning top. Terry started his presentation by showing a boxful of various spinning tops he had made over the years. They ranged in size from tiny tops, designed to be spun by tiny fingers, to a massive example about the size of a discus on a broomstick, which Terry spun using an electric drill to start it. In spinning-top competitions (last one to stop spinning) this massive top will always win because it simply wipes out all the others.

For this demo Terry chose to make the little box with a finial lid that can be spun as a top. Makes a nice trinket box for a child to keep their little treasures in and show off to friends who will be surprised to see that the lid is a spinning top. Mounting a suitable sized block between steb centres, Terry rounded it and fashioned a spigot on each end. He parted off about halfway to produce sufficient for two boxes and set one end in the chuck with a steb centre holding the other end in the tailstock. Next the tailstock end was turned to a suitable shape for its dual purpose. This is the bottom end of the lid (or top). It included a rebate for fitting to the box as well as enabling it to be jammed so the upper side of the lid/top can be turned later. The lid/top was parted off with sufficient depth to allow for shaping the upper end.

The box was then finished and, as Terry explained and demonstrated, this is the time to add any enhancements, such as grooves around the circumference. In this instance the groove was filled with metal paste, made from metal powder mixed with super glue, a talking-point on its own for the future owner of the box. (Check with Terry for the source of the powder.) After hollowing out the box the lid is jammed on so that its upper part can be finished and a finial added. Made from African ebony or old black piano keys if you can find any.

For much more detail please use the the following link to see an 18-step explanation of the whole project:

https://www.woodworkersinstitute.com/wood-turning/projects/spindle-work/games-toys/spinning-top-box/

Also, consult the book “Tops” by Michael Cullen (not the former Finance Minister).

Another interesting project to add to your collection, which could be made in time for Christmas presents or Kids First projects. Many thanks to Terry for another excellent presentation.

There is also a new project sheet written up by Dick Veitch – Spinning Top Box

Holm Miehlbradt – Square Plates

Club Meeting: October 30 2019
Report by: Grant Miles

Demonstrations by Holm are always well thought out and planned and this one was no exception. Holm began with a square block with 100mm sides and about 35mm thick. The centres of the block faces were found and the block was mounted between the chuck and the tailstock centre. The chuck jaws being used as a faceplate and the pressure from the centre in the tailstock holding the work in place.

A spigot of approx. 32-35mm was turned on the tailstock end of the block. It was turned with parallel sides and no chuck jaw recess as we would normally do. This is to allow for the work to be offset in the chuck jaws later in the process. The work is then turned around and mounted in the 35mm chuck. A shallow bowl is then hollowed out and the radius checked against a 230mm radius template cut out of card. Finish cuts were made outside in to ensure a good fit with the template. The bowl is then finished by hand sanding (the wings make it difficult to power sand). Holm used a piece of foam with the sandpaper over it to help follow the curved surface while sanding. He also noted that it can help improve the sanded surface if the wood is damped as it makes the timber fibres stand up and leads to a smoother finish.

The sanded bowl was then painted with Reeves acrylic paint. Black was used in the demo but any colour can be used. The front face only was painted using an artists brush. Care needs to be taken not to get paint on the sides of the wings. Once the paint was dry Holm at sanded at 45 degrees to the edge along the edge of the bowl to produce a definite line which helped sharpen the edge of the painted face. Holm shared some designs of bowls he had decorated previously. All of the designs were achieved by offsetting the bowl in the chuck. With care Holm showed us how to achieve the spiral design. First a corner is offset and a cut made. Next the bowl is offset to the middle of an adjacent side, a cut taken, then the next corner is offset and so on, continuing in the same direction, until the spiral ends near the centre of the bowl. Because of the bowls shape the cuts get shallower and shorter as you move towards the centre of the bowl. A piece of tape was stuck on the tools rest to enable the cutting tool to be located and to allow cuts to be repeated. The cuts in the bowl were made using a Glenn Lucas spigot(dovetail) tool.

Once the spiral was complete the square was reversed and mounted on a face plate with a centre holding it in place. The face place was a foam covered dome which was turned to a radius of 230mm. This matched the inside of the four-sided bowl allowing it to be held firmly and safely. The foot was turned down to approx. 30mm dia. The outside of the bowl was then turned down to a wall thickness of about 3mm at the outer edge. As part of this the foot was shaped. The bulk of material was removed with the centre in place. The work piece was then taped to the faceplate and the last of the foot was removed and turned to its finished shape. The bowl was removed from the face plate and given a hand sand to complete. A number of bowls with different designs had been circulating as part of the demo and the different effects made for very attractive finished bowls.

Thank you, Holm for an interesting demo. I for one learnt something new and I now have an idea I want to go away and try.

Dave Gillard – Decorative Christmas Ornament


Club meeting 23 October 2019
Report by Earl Culham

Dave opened with a promise that his demonstration would be the best attendees had ever seen! Or:- maybe not. But whatever, as he had a reputation for being a stirrer, he expected the same but to remember, that he is very sensitive and easily hurt; yeh right!

Dave’s daughter had found a kina shell (sea egg) on the beach so Dave had turned the shell into a very lovely delicate hanging ornament . The demonstration was how he had accomplished this feat.

To start Dave had prepared a cylinder about 150mm by 70mm mounted in a four jaw chuck with the tail stock in support. The first activity was to shape the portion nearest to the tailstock into a stylised representation of a kina. Somewhat bulb shaped. The tailstock was then removed and a 9mm holed bored right through the piece.

The 9mm hole was used as the starting point for hollowing the bulb with side walls of approximately 3mm. Lo and behold, the hollowing was done using a Roly Monroe hollower, strange that, maybe it is because Dave sells them, of course this warranted a few jibes from the back row audience.

After hollowing the bulb was parted from the stock. Dave had made up a threaded jig which was mounted on the head stock with an old 9mm drill bit protruding. On the tail stock Dave had turned a sleeve to fit over a stebcentre. The bulb was now held by the 9mm drill and by the wooden sleeve on the tail stock. This allowed Dave to finish the end of the bulb.

Now for the finial. When making a finial, use hard wood or tight grained wood.

After turning the finial blank to round, Dave drilled a small hole in the end. The tailstock was then brought up to the stock again and the piece re-turned. This is a trick of the trade to ensure that the finial is perfectly round and there is no wobble when the tailstock is removed. The shape of the finial is whatever the turner chooses, but remember to measure the depth of the bulb so that the shape fits nicely into the end of the bulb. Form a 9mm tennon on the end of the finial for fitting into the bulb.

To complete the ornament, a piece was turned to fit the top of the bulb and shaped as an attachment point for hanging.

As a grand finale, Dave produced three examples of beautifully finished hanging ornaments. A very informative demonstration of something different for a Christmas ornament.

Graeme Mackay – For the Tree

As blustery gales threatened to rip the plastic cladding off the roof, Graeme Mackay eased feather-like shavings off a tiny wooden bell. 

The theme was Gifts and Christmas, and Graeme demonstrated that if it’s possible to mount on the lathe, it’s possible to make something pretty out of it. This was great inspiration for our term project of making small gifts for those in hospital over Christmas.

Graeme started with a small cylindrical blank gripped between 50mm jaws, no tail stock, and quickly rounded off. The resulting round could have been made into a small sphere, a wooden egg, a mini bowl, a tiny finial, or a spinning top, but he decided the first one would be a Christmas Tree Bauble. 

Favoured tools included 10mm bowl gouge, mini skew, ‘deceased’ woodcut chisel reground to a point, modified spindle gouge chisel, mini parting tool, and Dame Edna Everage glasses.

While technically adept, Graeme’s approach to this small turning was more playful and flexible than outcome driven. Consideration was given to how it would hang in the tree. His advise was to “keep it simple” and “enjoy the process”. Mini turning is good practice for skew, texturing and decorative techniques. 

A jacobs chuck with a brad point bit was used in the tail stock to make a hole in the bauble for a bamboo skewer. This bamboo stick could be hung down as a decorative feature, or pierced and hung up to the tree. Still spinning on the lathe, the bauble was quickly coloured with a felt pen, ‘framed’ with lines made with a skew, and just ‘touched up’ with 240 or 300 grit sandpaper.

The trinket was parted off the lathe with Graeme’s right hand surrounding the piece to catch it as it came off. Graeme showed us that pyrography could make effective embellishments with scorching patterns. He used a mini ‘stylo’ dremel with dentist drill bits to etch decorations into the surface. Acrylic, water colour or other paint could also be used to decorate.

Having turned a bauble, then a mini bell, Graeme finished by showing us that even the spigot left in the lathe after part off can be utilised. He used the wood remaining within the jaws to make a tiny stage to place the wooden bell on.

Janet McDonald – Barking Up the Wrong Tree

Report by: Holm Miehlbradt
Club Night: 25 September 2019

Tonight’s Demo by Janet is called “Barking up the wrong tree”, it could be renamed “Wrong bark up the tree”.

As bark does not always stay on the wood or it is in the wrong place or it does not look as desired, Janet came up with an interesting way of making her own bark. Some of her inspiration comes from painting effects on pottery (www.jackiemasters.com).

The process starts with applying hot melt glue, a few lines at a time. Then using a small fingernail file she a bark-like texture. Care needs to be taken as the glue will flatten out as it cools.

Janet recommends to apply a layer of Gesso as undercoat before painting using a stencil brush.

The first coat of paint has to cover all of the undercoat. A dark brown color paint was used.

The next coats are smudged on with a finger. Each coat has a lighter color than the previous and is applied so that it does not cover the entire previous coat. The last coat is applied by tapping with a paint brush.

The obtained effect looks very similar to real bark, but one does not have to be limited by natural bark colors. Janet showed some projects with pink, orange or blue paint, very far from natural bark…..

Thanks Janet for the entertaining demo and the inspiration to enhance our turning projects.

Dick Veitch – A Somewhat Drunken Twist

Wednesday 18th September
Report by Emma James-Ries

Today we had the great Dick Veitch doing a demonstration on the diversity of spindle turning. As our term project is to turn at least one wig stand, Dick decided to show us the great variety in shaft shapes for the wig stand. To start Dick had premade the base and head and just needed to finish it off.

He mounted the base with the spigot in the 50mm chuck and centred it with the Steb centre mounted in the tailstock. He then proceeded to drill a hole in the base, using a 26mm Forstner bit mounted in a Jacobs chuck in the tailstock, to approximately 20ml depth.

Dick then repeated this step with the wig head. After that was completed, using pin jaws in expansion mode he held the head in the 26mm hole, remounted the head and brought up the tailstock to re-centre. The next step was to remove the spigot from the top of the wig head. He did this by nibbling back the edge of the spigot from the top of the spigot towards the head. This put less pressure on the chuck and once the spigot was down to a small size he then cut towards the centre. At this point he removed the tailstock and gently removed the remaining nub of the spigot. He then did a finishing cut on the head, to get the final shape. As the timber was Kahikatea, he did struggle with some end grain tear out at this point, but mentioned that soaking it in cellulose sanding sealer before doing a finishing cut would greatly reduce that issue. Once the head was finished he repeated this process of spigot removal for the base.

Now that the base and head were complete we could move on to the fun part of spindle turning. Mounting some end grain between Steb centres, Dick rounded it with the spindle roughing gouge, slowing down the cut at the end to get a smooth finish. He then proceeded to mark out the ends that would be inserted and glued in the stand and also marked where his beads would be using the rule of thirds. Taking the ends down to size with a parting tool (PT), he then also used the PT to make a cut to mark out the depth of the beads. Taking the spindle gouge he rounded the beads to the depth, a step that can also be done with the Skew. At this point Dick noted how important it is to work backwards from the tailstock when thinning spindle work. He finished up the pretty spindle by tidying up the beads with a tiny parting tool.

With the next spindle blank, Dick marked the centres and then measured 10mm out from centre on the diagonals and made four equal marks. He numbered them 1-4 clockwise. He repeated this step on the other end of the spindle, but off set the numbers by ¼. He then mounted this between Stebs and rounded it leaving a fair amount of width to the spindle. He took about 20mm at each end down to a 40mm width and made a bead at the end of each section.

The next step was when the fun happened. He remounted the spindle using the numbered off centre points he’d marked earlier. So each centre was positioned in the point numbered 1. Before turning the lathe on he marked out the spindle shaft into quarter sections of 40mm each and marked the measurements on the tool rest too. Once the lathe was on, the spindle, turning on its multi-axis, made a fascinating ‘shadow’. Dick cut down the first section so as only the middle part of the section was perfectly round and we could no longer see the shadow at that point. He then repeated this step, moving the axis points onto each sequential number and cut the remaining sections of the spindle. He worked at a speed of 1250 and used the spindle gouge for all of this stage.

Upon finished the last section he stopped the lathe and inspected the result to see if there were any remaining flat spots or areas that needed tidying up. Once satisfied, the spindle was complete. It really was an incredible ‘drunken twist’ formation that really made the viewer question how it was made. Great demo thank you Dick, it was my first time seeing off centre turning and it has given me a lot of inspiration to give it a go.

Warwick Day – Bonbonniere

Meeting: 11 September 2019
Report by: Murray Wilton

The first problem to resolve is “what exactly is a bonbonnière”?. Well, if you know what a bonbon is you are halfway there. Of course, it’s French for candy, so a bonbonnière is a container for bonbons. But Warwick’s subject was “How to make the world smell sweet”, and it was fragrance, rather than a carbo-hydrate fix, that was to be demonstrated. Warwick gave a short dissertation with samples of various small containers, from an incense burner dating from the 4th century A.D. to various types of fragrance containers for joss sticks, potpourri and coloured scented wood shavings. The Day home must be redolent of wonderful aromas! The word “pomander” was used throughout the demo, another lexical item of French origin meaning a globe made of scented materials, or the container for them. Thus, Warwick’s presentation was to be the turning of a pomander, with resin lid, texturing, colouring and vents.

Reacting with his usual aplomb to the audience banter, Warwick selected from a dazzling array of carefully honed tools and gadgets (he’s a self-confessed tool junkie) a spindle roughing gouge to turn square to round, the block mounted between chuck and steb centre. Rounding included marking the spot where the lid would be separated from the body, if a wooden lid rather than a resin one is chosen. After parting off the lid he used a bedan tool to form a spigot. (What a learning experience! This reporter, at least, has never heard of a bedan. Warwick explained that it’s the one tool with which you don’t rub the bevel.) [Day Hint No. 1: when you buy new tools pay cash, get cash out when you are at the supermarket, tell wife inflation is rife in the food bills.]

Warwick then rounded off the bottom half of the pomander, finishing with 400-grit sandpaper in preparation for texturing. The piece was then turned around and installed in cole jaws in order to turn off the first spigot and form the top half of the “bowl”. [Day Hint No. 2 (serious one this time): to avoid tearing when sanding end and difficult cross grains, apply sanding sealer to the work, then sand as usual.] Next he marked and drilled the vent holes using a brad-point drill, yet another item to add to your wish-list of must-have tools and equipment.

After texturing the upper half of the “bowl”, Warwick applied colour using gilders’ paste softened with sanding sealer (loves his sanding sealer, this turner), using his wife’s kitchen scouring pad to finish off. Then the hollowing can begin, first marking where the lid will sit. Warwick used a 10 mm bowl gouge to start the hollowing and, when a depth of about 25 mm was reached, changed to a spindle gouge. From his vast collection of tools he chose a cup tool, a hook tool and the now famous bedan to achieve final hollowing. [Day Hint No. 3: use slower speeds for hollowing.]

The resin lid can be made by pouring resin into a mould with a wooden peg for fitting into the chuck, once again holding the other end with a steb centre. Warwick set the speed at 1500 rpm working from slightly above centre on the tool rest (normally the tool is below centre for timber turning). Out came an Easy Wood Tool (carbide cutter for scraping), because as Warwick says normal bowl gouges tend to chip the resin. For finishing work, wet the sandpaper to stop it grabbing the grains and finish with wet sanding pads.

Another great demo from a master turner with a flair for clear and informative instruction. Many thanks Warwick, both for the demo and for adding some useful words to our vocabulary.

Richard Johnstone – Outrigger Turning

Club Meeting: 28 August 2019
Report by: Graeme Mackay

Richard’s night out
A night out with a big bowl, actually a really big green blank. So big that it went to an outrigger set up with the benefit that it provided a good view for the participating audience. A good windup for the crowd as Richard indicated that the shavings will go as far as the third row-or even further.

The location of the lathe was quite important for getting the targets in the audience. The set up with the outrigger provides the audience with a view that they can see what’s happening-or going to happen to them. And, possibly a clear indication that the shavings were coming their way. The bowl was mounted on a large faceplate with a solid array of screws. The blank was about 450 mm in diameter and well deserving been set on outside outrigger with the head angled.

There were many timely reminders of safety and checking throughout this very fun filled demo. Richard reminded everyone that turning the head allowed for a bigger diameter even without the outrigger. That is, he said with a smile, when everything is fixed down. The reminder came on the length of screws for the faceplate. These will loosen in Greenwood as activity progresses. Regular use of long tech screws with hex heads and a faceplate to start with is probably best when starting up. Noting : please don’t use roofing screws. This type of screw acts as a drill and rips the wood out, thus loosening an item fixed to the faceplate.

Step one was simple shaping and tidying up the blank. Initial shape was lathed out and preparations were made for making a spigot. A reminder that newly harvested timbers such as the Elm hold a significant amount of water. As the blank spins , a good spray is given off. However, as the water leaves the timber that slightly loosens on the holdings.

Richard reminder: to check, Check again and tighten all the time. it was noted at this stage that members of the audience had donned helmets and raincoats-particularly those in the front rows.
Spigot: as Richard was using wet wood, there to be a tight even hold. Also, that the spigot depth is not more than 10 mills. Too long and the spigot will bottom out on the chuck and produce a lot of additional chatter and wobble. Several persons mentioned the need to check the type of the wood. Elm has a tendency to warp or move. Hence slightly larger diameter so that the chuck can fit tidily into the spigot.

Faceplate off, the centre dimple made, the 130 mm chuck fixed on, and now the volunteers. A large amount of bowl hollowing was required. The volunteers were offered targets for shavings into the a number of rows.

The volunteers: First up was Dave Gillard hollowing with a tidy swing style. Shifting shavings at a good rate and making third row targets. Terry Scott followed. Noting that Terry’s concern was that the wood smelt like an old armpit. Although from this writer’s view, I thought it was a rather nice description of what the green elm really smelt like. Terry was able to get shavings well up into the third row just about the force. The next was Dick Veitch reminding people on nice sharp tools, a slightly higher speed, and shavings well into the third row. Also, Dick pointed out that the outside edge of a 400 mm diameter bowl was spinning higher speed than the given overall speed of 890 rpm. A good reminder.

Richard came in with finishing and getting the bowl down to a workable and storable thickness of around 45 mm. Noting that to thin and the bowl moves to thick and the bowl cracks. The even thickness gives a better result in regards to warping-particularly if this is a type of wood is inclined to do that. Storing is about 1 to 1 ½ years with standard sealer. Usually Richard puts the date on and sometimes the location of the collection.

Many thanks to Richard and his volunteers for a fun evening and good reminders on wet turning.

Bruce Wood – Turning Trembleurs

Club Meeting: 21 August 2019
Report by: Judith Langley

Bruce opened the evening by acknowledging French turner Jean Francois Escoulen who introduced fellow French turner Eli Avisera to the Trembleur. Eli had been the inspiration behind Bruce’s demonstration this evening, Eli was a guest demonstrator at the 2018 New Zealand Symposium. Bruce also acknowledged visitors from the Hamilton club, who had been out shopping all day (woodturning goodies of course). SAWG also enjoyed a full house of members for the evening.

A Trembleur is a long spindle with beads separated by very thin sections. The thin sections must be consistent along the whole length. When done properly, a trembleur is a marvel to observe and play with as it will shake and tremble with the slightest touch.

The lathe was set up with a Oneway Steady and standard chuck. Bruce was using a 400mm length of Kauri 40mmx40mm square. The head fitted in the jaws in it’s square format and the tail stock was brought up. Bruce mounted the steady ready for the next stage – explaining briefly the different designs of steady available and his reasons for choosing the One-way. Quality product with a proven background. Of course a price was bandied around for the Steady with courier postage being the main excuse for the high cost of this investment. Members scrambled for their phones to calculate Canadian dollars to $NZ. The feeling of those attending was that a few more Oneway jigs may be coming this way.

The blank was roughed down at a great speed to 38mm – the square spigot end was marked at the no 1 jaw position so that remounting could be made more accurately. The steady was reset near the tail stock end (not too tight) leaving enough wood (50mm) to form an ‘onion’. Once the onion was finished it was held and packed into the tail stock. Turning at 2000rpm Bruce highlighted his preference to secure a finger under the tool rest which gave much more control when turning intricate pieces. (referred to as Oogeehoogees). The steady is moved along as you go so that the wood is secured as near as possible to the turning area.

The next major step was to turn the thin sections down to 4.2mm, although other completed Trembleurs on show were around 3mm. The larger diameter preferred for demonstration purposes because of the concentration needed for the finer option. The lathe was now running between 1700 and 1800 rpm. With the 4.2mm spindle formed this was followed by a set of captive rings. This got the audience excited as Bruce had completed rings jumping around as he made the next ring. Stressful for everyone present, but Bruce carried on with his very vicious looking homemade hook tool, looking as if it was going to destroy the work at any moment.

Eventually the rings were taped down and the audience relaxed as more baubles, balls and spindle areas were added to the artwork.
Time ticking on, Bruce reverted to an almost completed Trembleur so that he could show the use of his String Steadies. Magical little gadgets that required Sewing Awl waxed nylon string to be wound around the spindle areas in a figure eight configuration. At this point the spindle was remounted matching the no 1 jaw mark at the foot end of the spindle and the onion was held in a shed made large French knitting spool held in the tail stock. This was packed with foam/rubber to hold the onion carefully in place while the stand end was completed. The knitting spool also acted as a String Steady.

Again the stress levels rose within the audience as Bruce started up the lathe with 3 string steadies in action, a few squeaks and groans, but all was well as the Trembleur was added to, moulded, a small wheel formed, another couple of baubles completed and a shaft turned to fit in a pre-turned stand.

Demo completed, spindle intact, and a great evening enjoyed by all. Bruce wound up the evening by selecting a random number on his phone app. which was matched with door entries – yes! number 31 in the door was Cam Cosford who won the turned Trembleur.

Thank you Bruce for a wonderful demonstration – you kept us all sitting on the edge of our seats all night. Your enthusiasm, energy, professionalism and humour made for a great demonstration.

Bruce Wiseman – Pepper Grinder

Club Meeting: 14th August 2019
Report by: Ross Johnson

Bruce commenced his demonstration by showing three finished Pepper Grinders all approximately 300mm high. One of these was a unit he made many, many years ago for family use and it is still in service. He then discussed the pepper grinder mill and the various options available – the best general purpose one is a ceramic model –available from your local supplier – as this will do salt as well as pepper. The overall length is 260mm and is suitable for up to 300mm high unit. The shaft can be cut to make shorter units.

Bruce showed and talked to the Project sheets available from SAWG web site on how to produce a Pepper/Salt grinder. I will make use of these pages to provide information on the pre done work by Bruce.

Bruce commenced the fabrication of his grinder with a pre drilled and rounded piece of wood. The base section had a drilled hole of 45mm dia. and 20mm depth; then a hole of 38mm by 35mm depth to accommodate the base of the mill grinder; the hole continued at 25mm dia. (or smaller) to within 30mm. of the top of the grinder. These holes had been sanded and finished. It is recommended by some to cut a groove at the far end of the mill hole – 6mm.long and 3mm. deep for fitting and locating the grinder mechanism. Bruce like many others dispensed with this step. Bruce had used Forstner bits and an Auger to drill the holes.

The body of the work was 320mm long and 81mm diameter. The timber being used was N.Z. Rimu.

Part the grinder body from the capstan. Set the capstan aside.
Remount the body in a chuck (100mm) and drill a 35mm hole in the top to meet the previously drilled hole. Sand and finish end faces and set aside.

Time to remount the capstan and cut the spigot on the underside of the capstan to be a nice fit in the drilled hole in the base. Not loose at this stage.

The base was now married to the capstan and held in place by the tail stock. Bruce used a jamb chuck but a cone centre or equivalent could be used. As demonstrated a good selection of pre made jamb chucks is beneficial.

The two pieces were now turned to shape using a roughing gouge for initial shaping and then a Skew chisel to finish. The shaping is your individual choice as is whether any grooves and additional decoration is done. Two grooves blackened using a wire were shown on one of the samples. Sand all parts. The capstan was turned and finished as far as could be at this stage. Remove the main body and place aside. (Refer photos for details)

The capstan now had a 22mm.dia. hole drilled 34mm. deep into the spigot. Again a groove 1.5mm into the sides of the hole 15 to 20mm from the base of the capstan to locate the top drive unit of the pepper grinder. Measure the depth carefully for each hole using masking tape as a depth indicator. Either continue this 22mm diameter hole or drill a smaller one 7mm or so to accommodate the shaft. Length will depend on actual capstan shape. Shape the spigot to a comfortable fit in the main body. Allow for easy turning but not too loose.

Remount the capstan by the spigot in a chuck or jamb chuck to finish the top side. Sand and finish to suit.

To fit the grinder into the bottom of the base part use a press. Bruce had made up a plug to do this and uses the drill press or tailstock to apply pressure.

The parts should be a firm fit so that the ribs around the parts seat into the wood and prevent rotation. If grooves have been cut the clips go into the cut recess and hold the parts up into the drilled holes.

Some makers consider pressure may split the wood and prefer to cut the clips off and glue in place. Bruce just pushed them in to a non-grooved hole and this appears to work. His 6 year old grinder has not had any problems.

Well done Bruce a well-executed demonstration that showed us how making a pepper/salt grinder does not need to be a daunting experience or one to be avoided. Even if Skew use is needed. Good to see that even after a non-turning period of some 3 years the old skills have not been forgotten or lost.

Mention was made that Terry Scott has had a run of Econo 260mm Ceramic Salt and Pepper Mills made and is doing a deal.!! 6 units for $80.00 .

With this demo and Terry’s deal I might just have to make my first grinders.

Project Sheets
Pepper & Salt Grinder, Crushgrind
Pepper & Salt Grinder, Dumpy