Category Archives: Reports

Kieran Fitzgerald -Making Tools

Club Meeting 1 June 2022
Report by Denise Donovan

On Wednesday 1st of June Kieran Fitzgerald gave an enlightening and thoroughly entertaining talk on Making Tools for your workshop. here were no less than 51 tools in Kieran’s collection, all of which had a practical and sometimes ingenious use.

We started off with handles: Handles are a great spindle turning project for new turners and can save them a few dollars by buying unhandled scrapers and gouges etc and making their own. The rules for a tool handle are as follows … for every inch of overhang on gouges there should be 5 inches of handle, and for scrapers and skews 3 inches of handle to 1 inch of overhang.

But handles are not just limited to gouges, you can make them for, Allen keys, collet keys, knock out bars, sawblades, the limits are endless, and Kieran’s collection will attest to this. I don’t think he had anything without a handle.

Next up an amazing range of tools fashioned from other tools:

  • A knockout bar from a wheel brace, with handle of course (I’m not sure what he’s going to use when he needs a wheel brace … although I’m sure he’ll improvise)
  • An Awl from a screwdriver blade (new handle of course)
  • Large screwdriver fashioned into a point tool
  • Guitar string for a burning wire (again with handles)
  • A thin parting tool from a hacksaw blade (handled? … yes indeed)
  • A thin parting tool from an old bone handle dinner knife (guess what … a new handle … you get where this is going don’t you …. A handle for everything, and everything with a handle 😊)
  • A small skew purpose built for turning away tenons on bowls, made from an old screwdriver
  • Drill with a handle for a depth marker when turning
  • Handmade chatter tool from a reciprocating blade (for end grain only)
  • Open ended spanners sharpened for turning consistent diameters
  • Sanding mandrels from screwdriver bits of engine valves

Amongst the remaining assortment we had the following gems:

  • Off centre turned mallet head and handles
  • Dead blow hammer made with lead shot in the head
  • Bowl depth gauges – screw type and figure 8 type
  • Home made compass from wood, nail, and pencil
  • Sanding plate with a spigot mount – for those without a sander
  • Vacuum coupling assembly
  • Various pen turning tools such as a reamer from a file, barrel holder, and a pen press
  • Morse taper with tenon and ball bearing race for hold a piece e against the tailstock
  • Metal tapered spindle on a shaft to hold a polishing wheel
  • Spindle turned paper towel holder
  • Sanding sealer jar lid with paintbrush insert
  • Drum sander

These tools are just some of the ideas you yourself can make and use – some of the projects are also on our website – so let’s take inspiration from Kieran’s Kiwi Ingenuity and start creating

Thank you, Kieran, for a great talk, and the giveaways to help some newbies start their own handy tool collections.

Daniel Strekier – Amazing Grace

Club Meeting: 16 March 2022
Report by Denise Donovan

On Wednesday we had a visit from Daniel Strekier of Masterpiece Woodworks, a passionate woodworker, with an eye for a challenge.

Weighing in at 60kg, with a top speed of 47.2 km, let me introduce Grace, the result of a year of hard work (6 months if you don’t count breaks, which I’m sure were much needed). Grace has over 500km of trail riding tucked under her tidy seat, with many more to come.

This bike is a woodworker’s dream, featuring amazing laminations of Walnut, Ash and American White Oak, a hollow wooden frame, 22 speed derailer system, hydraulic brakes, and the fattest tubeless tyres you ever saw on a bike.

Each wooden piece on this bike has been lovingly handcrafted by Daniel himself, through trial and error, a wealth of woodworking knowledge, and an “anything is possible” attitude.

Daniel originally started the bike by accident, basing its’ design around 2 tyres he purchased for a remote-control gate that never quite happened, instead deciding he needed a challenge, and a project that displayed his talents to current and future customers.

The 17.5 kg tyres and rims were started with a plywood wheelbase, and white oak rims with finger joins. The mudguards were a 2-way lamination using three 2mm sheets which provided quite a challenge, using a stave process popular in barrel design and hot water to shape the brackets. They were then strengthened with an epoxy fiberglass underlayer. The solid forks were each assembled from 9 pieces of wood, with a steamer utilised to bend each individual layer.

The frame design of the bike took 4 hours alone. Assembly of the 8kg framed consists of a basic MDF frame designed around a mountain bike. The original design also used a normal gear system but was later changed to a Shimano 11 x 2 gear hub. As “straight lines are too easy”, the unique lamination was done by cutting and gluing 2mm strips, creating curved lines by cutting several strips together on a band saw, and then mixing them up.

Not everything could be wood, so improvisations were made where strength was a factor … the handlebars and chain guard encompasses carbon fibre, the wheel axels are steel, and the pedals are aluminium wrapped in wood

As if the bike wasn’t enough, Daniel has also made his own matching helmet using resin and wood cut with a plug cutter, and a stunning wooden chain and functional wooden lock

All this was completed over a 12-month time frame, with many hours just standing and staring while thinking over the technicalities, many sleepless nights, while also building a business.

In the words of Daniel … “You can do anything you want if you want it enough”

Grace of God was so named as it translates to “Thank you God for the possibility and Capacity”

Keep a lookout for Daniel’s next project – a wooden e-bike

https://masterpiecewoodworks.net/grace

Dick Veitch – Stepping up on a pencil pot

Club Meeting: 25 May 2022
Report by: Graeme Mackay

A new take on Barbara Dill style pencil pot with a demonstrators variation. Dick Veitch presented a clear, easy to follow view of the multi-axis pencil pot from the SAWG project list.

The demonstration highlighted the progression through the stages of the Barber Dill style project that provides an excellent exercise of shaping curves, multiple axis, and sharpness of form. Dick raised the issue of deciding on grain, wood features and wood types. In this project, the choice highlights the clean curves of this project.

There was a simple focus on the basics: accurate measuring, working to the plan, sharp tools, and quiet cuts.

Technical points:

  • Ensuring that the centres are on an equilateral triangle.
  • The spigot fixes the cutting line is the same in each hand.
  • Following simple marking lines fixes the alignment of the individual axis points.
  • Axis numbers need to be clearly marked. Use a felt tip for the beginning
  • As curves need to be replicated, variations and incorrect cutting clearly show up.
  • Small cuts and check
  • Ensuring that the centres are on an equilateral triangle.
  • The spigot fixes the cutting line is the same in each hand.
  • Following simple marking lines fixes the alignment of the individual axis points.
  • Axis numbers need to be clearly marked. Use a felt tip for the beginning
  • As curves need to be replicated, variations and incorrect cutting clearly show up.
  • Small cuts and check

Dick Veitch variation: beads across the individual phases. In this case two beads formed in a standard manner. Initial lines with skew chisel, once formed cleaning with spindle gouge, and the bead lines finished off with a sharp skew.

The inevitable question from the floor arose over running the beads, joined around the three faces. A technical complicated discussion was followed the main point of “no easy answer.”

Dick Veitch final reminder: planning, measuring, and Sharp tools and that the SAWG project sheet gives excellent guidelines. An excellent demonstration.

Richard Johnstone – Wonky Wood

Club Meeting: 18 May 2022
Write-up: Holm Miehlbradt

Richard stayed with the term theme and incorporated an off-center element on his turned platter.

The project started as a traditional platter: blank mounted on a faceplate, turn the bottom of the platter including a spigot, mount on the spigot and turn the top of the platter. The only difference at this point was the slightly longer spigot than for a simple platter so that an offset can be achieved later.

Then the fun begun. The platter was mounted in the spigot at a slight angle. This way crescent like grooves can be cut on the rim of the platter. Richard cut the grooves with a 55° bowl gouge. There was a good discussion, with sometimes contradicting opinions (!), about which tool would cut a better groove and how to adjust the spigot offset to achieve a desired groove pattern.

To enhance the rim embellishment, Richard colored the grooves (he used a wood dye). Then he sanded the rim surface to remove the excess color and thus only left the coloring in the grooves.

Thanks Richard for the entertaining demo. A lot of ideas to explore using the spigot offset.

Terry Scott – Off Centre Turning and Balancing

Report by: Bill Alden
Club Meeting: 4 May 2022

Terry opened by showing some, mainly burl, pieces he had turned with multiple adjoining bowls highlighting the fact that the intersecting edges must be crisp. He also showed some pieces that visiting turners from overseas had demonstrated, from his collection.

He then showed us his large faceplate he uses for large pieces. He has a lathe with a much bigger swing than the DVR’s. We were then shown on a smaller scale how he balanced a piece on the lathe using large lead weights screwed to the face plate to which the slide (carrier) disk was attached.

Tip: If using an MDF faceplate the screw holes may raise the surface which must be sanded smooth before moving the piece and re-screwing.

To centre the burl on the lathe with the face vertical he used a faceplate attached to a reverse adapter in the tailstock to hold the burl while gluing it with wedges to the slide.

The lead weights are screwed on with initially 1 screw as the weight can be adjusted for balance by turning it. Add or take off more weight until the face plate remains stationery. When turning bring up the tailstock for safety and with the handle right down on the hip flatten the face. Final flattening can be done using a large skew or a heavy negative rake scraper. After it is flat sand, so the edges of the bowls remain crisp.

We can then mark out the multiple bowls with a compass, an odd number tend to look best overlapping as you see fit. The slide can be recentred on the bowl to be turned and rebalanced. When turning overlapping bowls keep the flute well closed as there is a lot of hit and miss and the edges could be damaged. Sand and finish, with Danish or hard burnishing oil, each bowl before moving on to the next.

Important Tip: Discard all rags and paper towels that have been used to apply oil into a metal bucket of water or preferably outside as they can spontaneously combust and are a fire hazard.

Thank you, Terry, for another well put together demo with much information to absorb.

John Whitmore – Introduction to Ornamental Turning

Club Meeting: 13 April 2022
Report by: Kevin De Freitas

John is a long-time member of a small group of club members interested in Ornamental Turning but is the sole remaining one due to people passing on or moving away.

John started by defining Ornamental turning as the merging of creative woodturning and precision engineering. It is a process of sophisticated decoration of one’s work.

Ornamental turning traditionally uses wood, bone, ivory or metal and, in more recent times modern plastics like Perspex and Acrylic.

This endeavor is not for everyone. It tends to appeal to engineers or those interested in the technical side of turning. Typically, equipment is hard to find and more often than not, Ornamental Turners will make their own. It is expensive to buy or have made.

This craft has its origins with mechanically minded royalty and aristocracy (due to high cost) since the 15th century. It saw a decline in the 1920s due to a greater attraction for engineers – Cars.
A classic name is HOLTZAPFFEL, who made lathes and Rose Engines. There are known to be several in NZ.

Today there is a big following in USA and Europe.

John referenced the geometric nature of the author’s recent demonstration of the construction of Singapore Balls in reference to the fact that Ornamental turning has its roots in geometry and the interplay and interaction of various geometric patterns.

John talked of the interest in ornamental turning in the past. The group met monthly and had support from NAW and various experts from around the country – for example the late Bob Lin and his Ashburton Wood Turning Museum and book. John expressed interest in forming a new group and asked for those interested to meet up afterwards. 4-5 people gathered around the Rose Engine in the corner of the club afterward and all seemed to have some interest.

Plenty of samples were passed around the room. The wood suggested was dense and tight grained, for example Camellia, Rata, Black Maire and Matai and Camelia was shown.

As samples of work were passed around, John began to explain how various patterns are made.
Even with rudimentary geometric patterns as a base, one can build up additional patterns by hand to get a good effect.

Fly cutter in head stock – a high speed fly cutter that is safely mounted in the headstock can be rotated at high speed. By holding the work in a stationary position, patterns can be cut on different axes and by rotating/repositioning the work, an interplay of circular patterns can be easily produced.

Router in tool post – This method allows the cutter to be placed on even more planes and by using the indexing built into the headstock, patterns can be cut in regular intervals. John gave the example of symmetrical slices that could be cut into a bowl.

Ornamental Wood Burner – John demonstrated a homemade wood burner set up. The burner itself was adapted from a computer power supply. The burner was mounted on a strengthened articulating computer monitor arm, allowing it to be positioned and any point and angle in space. The work is then held in a rotating carving mount with an indexing wheel. With the heat adjusted to suit the wood, ornamental pyrography is possible.

Teknatool Ornamental Turner Jig – 500 of these machines were made. They consist of a 2-axis vice and a chuck on a spindle. The vice is high precision with very little backlash to allow accurate adjustment. The work is held in the vice and a cutter is mounted in the head stock. The work can be easily advanced or rotated by the spindle, again allowing interlacing circular patterns.

Rose Engine – a rose engine has a spring loaded, moveable head stock that is guided by Rosettes. These are geometric shapes (curves and bumps) that are traced by a follower that moves the headstock in 2 axes. A fly cutter can then be used to cut patterns in the material. The head can be adjusted on an indexing plate to interlace the patterns. There are endless permutations.

Please contact John if you are interested in joining the group.

Bruce Wood – Danish Birds

Club Meeting: 30 March 2022
Report by: John Young

After a break due to Covid and eye surgery, Bruce was back with his long awaited demo. This time it was Danish Birds, based on Danish designer Kristian Vedel 1959 design.

After showing us some interesting wooden birds that he wasn’t going to make (perhaps another demo?), Bruce got started with the Danish bird.

The first part was creating the unique eyes, composed of a dark wood for the iris and a lighter wood for the white of the eye.

A small length of Purple heart was used for the dark iris. Bruce had taken it upon himself to cook the Purple heart in the oven to give it a dark, intense shade of purple. Mounting it between centers, he quickly turned it down to a 12 mm dowel.

A lighter block of wood for the white of the eye was then mounted in a small chuck. With a drill mounted in the tail stock in a Jacobs chuck, Bruce drilled all the way through the block with a 12 mm drill.

The Purple heart dowel was then glued inside block. Once set, the block was mounted between centers. Here, the key is to remount the block slightly off-centre, so the dark iris is off to one side. This was then turned down to a 12mm dowel and with that, the eye was now complete.

To make the head, Bruce took another small block, drilling 12mm holes on either side. Small lengths of the eye dowels can be glued into these holes, creating eyes on either side of the head.

When gluing, take care to orient the eyeballs the right way (towards the beak!).

Once these have been glued in and set, the block is mounted between centres. Mark the head in the middle and start rounding. On one side of the head, the long beak is shaped, and on the other a small chuck bite is cut. For the final shaping of the beak, the head is remounted in a small chuck. Once the head and beak have been cut to their final shape and sanded, the head can now be parted off.
To get a nice rounded head, Bruce used a piece of steel pipe with the inside edges sharpened to hone it perfectly round.

For the base, another small block was mounted between centres. A 35mm chuck bite was cut into one end. Once remounted in a chuck, the body can be shaped to your preference, but the upper end must be kept to a 25mm diameter. A hollow is cut at the top, to sit the round head comfortably.

To remove the chuck bite, Bruce had an ingenious way to mount it between centres. A live centre with a cup end was used in the tail stock, with a golf ball used in place of the head.

With a multitude of onerous golf puns rapidly cascading from the audience, Bruce finished another ingenious, live wire demo. Thanks Bruce!

Check out the Project Sheet

Kevin De Freitas – Singapore Balls

Club Meeting: 23 Mar 2022
Report by: Strett Nicolson

Kevin De Freitas is a master at de-mystifying the secrets and mysteries of turning a great looking , well turned and perfectly working Singapore -Ball.

Kevin skipped through all the basic mounting, turning, finishing of a sphere and the creation of a sphere mounting jig (sphere chuck) and picked up his demo-lecture at the “How to” of marking out the points on the sphere for drilling the holes to house the spikes.

Again I must applaud Kevin for the clarity with which he purified the murky waters of the mathematics behind the location of the points for a perfect 6, 14, and 32 spiked Singapore Ball. If the challenges of the aforementioned SB ( Singapore Ball) are not challenging enough, he went on to illuminate the marking out process of a 12 and 20 point SB.

He provided various predetermined numerical factors that when multiplied by the diameter of the sphere determine the radius of a circle that would be used to draw circles and determine multiple point SB’s. ie, factor 0.3825 for a 14 point ball from 6 primary points or factor 0.5255 for a 32 point SB using a 12 primary points .

Quite simply a SB is created by using the points of a basic mathematical shape to mark the drilling points on the turned sphere. These drilled points will house the spikes. Kevin started his explanation using the triangle, I’ll explain this later. The various SBs mentioned above are spheres that are marked and drilled at the points of tetrahedron, octahedron, cube, ( although Kevin did not speak of an 8 pointed SB that would be the result of using a cube shape) icosahedron, dodecahedron. And/ or the use of the points of these mathematical shapes and then omitting certain points to create to achieve say a 20 or 15 point SB. The big question of course is how to determine the point on the sphere.

To create a 14 point SB, Kevin used the mathematical shape of the basic triangle. Firstly, the directional poles, north, south, east and west as well as the mid point between east and west on the equatorial circumference of a sphere are marked to create 6 basic points on your SB. To determine these 6 basic points see note below. To add 8 points for a 14 point SB one would simply scribe an ark, using a pair of compasses, from each point of a triangle created between a polar point and two adjacent points on the equator to find the middle of that triangle. Then working ones way around in each triangle of each hemisphere, one creates 4 points on each of the tropical lines of the sphere. so creating another 8 points. These points on the tropical line of each hemisphere together with the 6 original points make up the perfect 14 points to be drilled. Eureka! Mystery solved.

By mounting the sphere in his home made sphere chuck with a point perfectly centered a hole is drilled that is the exact diameter of the spike intended to be housed in the hole. Before moving the sphere to drill the next hole Kevin hollows out( about 1 mm) the hole drilled leaving about 2 mm depth at the mouth of the hole untouched. This will eventually be the stop that prevents the spike from falling out of the hole, once the spike is jammed or forced into the hole. So all 14 holes are drilled and hollowed ensuring that the holes drilled are deep enough to house the whole spike yet shallow enough for the core of the sphere not to become a lose piece of timber. Kevin only drilled and hollowed one hole as time did not permit any more turning than this.

The diameter of the spikes must be a fraction bigger in diameter than the holes drilled. A spike a fraction narrower will tend to fall out and a spike too thick will not be able to be fitted without damage to the sphere or spike and tend to stick. Kevin had a jig into which the point of the spike fitted to approximately half the length of the spike. Then by placing a sphere hole( hollowed out) perpendicularly above and onto the rear of the spike , with a sharp “bash” of the hand onto the top side of the sphere the spike is forced into the hole. ‘’Eureka’’ the mystery of fitting a spike into a hole the same diameter as the spike is demystified.

Some discussion followed regarding non mathematical determination of spike points on a sphere. Kevin believes that the points on basic mathematical shapes must be used to determine accurate and even placement of spikes points on in a sphere to create a well balanced SB. As a result of questions, Brian and others were challenged by Kevin to produce an SB with odd number of points to see if it works as efficiently as the mathematically determined fixed points. We wait to see if anyone rises to the challenge.

Note: The way to determine the first 6 basic points is to measure the diameter of the sphere ( at 3 or 4 different places and average the measurement) . Then multiply the diameter by 0.707 to set your pair of compasses to that length. Mark a starting point for later reference and use. Then along the equator line mark out with the length as determined above mark the 4 points on the equator line. These 4 points must be equidistant. Then using Pythagoras theorem ( the sum of the square on the hypotenuse is equal to the sum of the square on the other two sides) ( or simple doubling the measurement used on the equator) one determines the north and south pole points. Any of you marked points on the equator can be use to measure the North and South pole points. “Eureka’’ , you have your 6 basic points.

Mystery solved. Well done and thanks Kevin for a most interesting lecture.

Dave Gillard – Pepper Mill

Club Meeting: 9 March 2022
Report by: Nicole Morley

When designing your pepper mill shape, keep in mind that these are quite commonly dropped or not treated like a prized possession. So, in another words, don’t get too crazy with your overall design and keep it more to the embellishing side if you feel the need. Hardwoods are generally better for making pepper mills as well for the same reason.

If your tool rest has those nicks in it from hitting your tools on it, a hint is to use a belt sander on it to tidy it up. Nothing worse than trying to get a flat surface and hitting those spots.

Now, start the lathe slow to check everything is secure and then ramp it up to warp speed.

From this point I then added two pages of notes on the whole process of making the peppermill, then thought to be honest, when you purchase the mechanism, it will come with instructions in it. So “select all” delete.

So just a few more notes..

  • Use CA Glue around the central hole in the base of your grinder just to strengthen up the wood there in case of knocks etc.
  • Some plastic caps have multiple stripes of raised plastic on them – take off every second one to make it easier to install.
  • Some also have clips, you can quite happily cut these off with a pair of side cutters or a Stanley knife then a light sand. These aren’t really required.
  • Use a 5 minute epoxy to glue your pieces in place.

I also will just take a second to Thank Dave for the mechanisms that were up for grabs in our raffle tonight. Look forward to seeing a few made mills on the show and tell table. 😊

And if you have any other queries, feel free to flick Dave a message. He is always willing to answer any questions you may have.

Nicole

Project Sheet – Pepper Grinder
Watch David on YouTube

YouTube player

Garry Jones – Tubes

Club Meeting: 2 March 2022
Report by: John Young

With a demonstrator away, Garry kindly jumped in at the last minute to give us a great demo.

Tonight Garry showed us how to make Tubes. A fun project, in which warping, shrinkage and movement are welcomed to create unique pieces. The tubes also lend themselves to well to embellishment, carving, pyrography etc.

Before beginning, Gary spoke about the importance of understanding how the grain will influence movement of the piece as it dries. For example, a tube cut from end grain might warp very little, while a cross grain piece will offer much more movement.

Gary started with a long piece of wet Banksia approx 70mm in cross section. Wet wood is of course necessary to get the movement and warping of the tubes as they dry.

Bark can be left on or removed. If you plan to leave bark on at the top, it is important to cut down and away from the bark rather then towards it, as this lessens the chance of accidentally removing the bark.

Firstly, the blank was mounted between centers and rounded.

A 50mm tenon was cut at the base. A slightly larger tenon is cut than usual as we are dealing with wet wood which compresses more.

The blank was then remounted into a 50mm chuck. The tail stock can be brought up to help center the blank.

After mounting, a Forstner bit with an extension is mounted in the tail stock. Gary used a 44mm forstner bit for this demo, but you can use any size you like, you will just have to create a matching size mandrel for it.

Mark how deep you want to drill, taking care to leave enough (i.e. 10mm approx) on the bottom for parting off later.

Gary then drilled out the center, taking care to remove the shavings frequently to prevent jamming.

Dick suggested not pulling the forstner bit out all the way, when removing shavings. This prevents the entry point getting damaged or chipped every time you re-enter with the forstner bit.

Once the tube was hollowed, Gary removed it from the chuck and mounted a pre-made wooden mandrel. The mandrel is a large dowel cut to roughly the same width as the hole in your tube.

The tube was then be fitted over the mandrel, with the tail stock brought up for support. If the fitting is lose, tape can be wrapped around the mandrel to provide a snug fit.

Be sure to get a nice firm, centered fit. If the tube is off-center, the wall thickness of your tube will become uneven.

Once it was firmly on, Gary reduced the wall thickness to his desired amount.

Important to note the tube should be completed in one go, without removing it from the mandrel. It can warp very quickly and may not recenter again once you have removed it.

Once he was happy with its final thickness, Gary parted off the base, cutting a slight concave in the bottom, to allow the tube to stand flat.

Sanding can be done before parting off, or when the wood has completely dried. Some woods are better to sand once wood is completely dry.

Thanks Gary for stepping in at the last minute and giving a great demo.

https://sawg.org.nz/sawg/wp-content/uploads/2011/09/Tubes.pdf