SOUTH AUCKLAND
SOUTHAUCKLAND
TURNING TOMORROW'S TREASURES

Three-legged Stool

A three-legged stool will be stable on uneven surfaces, and may even be built without perfectly equal leg lengths. Dimensions for this stool are the makers choice.
There are numerous ways to get the stool top mounted on the lathe for shaping: screw a large waste piece on with screws at the planned position of the leg holes; or glue on waste blocks; or hold the wood between centres to cut the first chuck bite; or use a vacuum chuck while cutting the first chuck bite; or drill a shallow screw chuck hole on the under side and decorate it later.

Draw a circle with a radius that is between $3 / 4$ and $7 / 8$ of the radius of the stool top. Mark the positions for the three legs on that circle using the lathe index or stepping around with a compass set to the radius of the circle.

Drill the leg holes. The holes may pass completely through the top or only part way depending on your choice of leg fixing method - glue joint; blind tenon; or right through and wedged.
The holes should all be at the same angle. Make a template (100° recommended) to ensure consistency. Use a drill holding jig if possible.
Turn the stool top over and finish the upper side. Then turn it again. Hold it in Cole jaws, Longworth chuck, vacuum chuck, or other method to remove the spigot from the under side. Finish the under side.

Mount the wood for the legs between centres and turn it to round. Drill the holes for stretchers at this
 stage. The 100° template will work for the angle but a 98.65° angle is more accurate. Then turn the three legs to shape and finish.

WOODTURNERS

Calculating Stretcher Details

The legs of a three-legged stool are sloped outwards at an angle of 10° from vertical, or 110° measured on a radial line from the centre of the stool top. To calculate the length of a stretcher to be fitted between these splayed legs can be a challenge.

$\begin{array}{lll}\text { SD } & \text { LD } & \text { Add } \\ 150 & 151 & 17.5\end{array}$
$160 \quad 161 \quad 18.7$
$170 \quad 171 \quad 19.9$
$180 \quad 181 \quad 21.0$
$190 \quad 191 \quad 22.2$
20020123.4
$210 \quad 211 \quad 24.5$
$220 \quad 222 \quad 25.7$
$230 \quad 232 \quad 26.9$
$240 \quad 242 \quad 28.0$
$250 \quad 252 \quad 29.2$
$260 \quad 262 \quad 30.4$
$270 \quad 272 \quad 31.6$
$280 \quad 282 \quad 32.7$
$290 \quad 292 \quad 33.9$
$300 \quad 302 \quad 35.1$

The angles of the legs when measured on the line between	310	312	36.2
each leg (the ST distance), is 96.66°. The stretcher holes in	320	322	37.4
the legs should be drilled at this angle. The ST distance is	330	332	38.6
known or can be measured. The SD length will be your	340	342	39.7
choice. The SL stretcher length is therefore ST distance	350	352	40.9
plus $2 \times$ Add (from the table). Add or subtract the distance	360	362	42.1
the stretcher hole bottoms are from the leg centre line.	370	373	43.2
To be super accurate positioning the stretcher holes use	380	383	44.4
the length LD from the table beside the SD length in use.	390	393	45.6
	400	403	46.7

The data in the table are derived from the website http://saltire.com/applets/triangles/tri1s2a.htm

WOODTURNERS

Three-legged Stool Calculations

This page provides a mathematical method to calculate the stretcher length for a threelegged stool. It does presume that the stretcher extends in to the centre of the leg but many woodworkers advise that the stretcher should not go more than one third of the leg thickness into the leg.

$R=$ radius to the leg holes
$\mathrm{u}=$ unknown radial at stretcher height
$\operatorname{Sin} 10^{\circ}=\frac{u}{L D}$
$\mathrm{u}=\mathrm{LD} \operatorname{Sin} 10^{\circ}$
The angle at the centre of the stool between the radial lines $=120^{\circ}$
Make an imaginary triangle at the plane of the stretchers and dissect it to make two right angle triangles
$\operatorname{Sin} 60^{\circ}=\frac{\frac{S L}{2}}{R+u}$
$\frac{S L}{2}=(R+u) \operatorname{Sin} 60^{\circ}$
$S L=2(R+u) \operatorname{Sin} 60^{\circ}$
Stretcher $=2\left(R+L D \operatorname{Sin} 10^{\circ}\right) \operatorname{Sin} 60^{\circ}$
$\operatorname{Sin} 60^{\circ}=0.866$
$\operatorname{Sin} 10^{\circ}=0.1736$
Stretcher $=2 \times 0.866(R+(L D \times 0.1736))$
Stretcher $=1.732 \times(R+(L D \times 0.1736))$

